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Bounds for a Bose Condensate in Dimensions v >t 3 
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A stronger version of the Bogoliubov inequality is used to derive an upper 
bound for the anomalous average [(a(x))[ of an interacting nonrelativistic 
Bose field a(x) at a finite temperature. This bound is la(x) ~1 < oR, where 
R satisfies 1 - R = (RT]2Tc) vl2, with v the dimensionality, and Tc the 
critical temperature in the absence of interactions. The formation of non- 
zero averages is closely related to the Bose-Einstein condensation and 
[(a(x))[ 2 is often believed to coincide with the mean density po of the 
condensate. We have found nonrigorous arguments supporting the in- 
equality Po <<. [(a(x))] 2, which parallels the result of Griffiths in the case of 
spin systems. 

KEY WORDS: Bose condensation; correlation inequalities; spontaneous 
symmetry-breaking; critical phenomena. 

1. I N T R O D U C T I O N  

Bose-Eins te in  condensa t ion  is mainly  a theoret ica l  phenomenon .  Though  it 
occurs in the exact ly soluble mode l  o f  the free Bose gas, p rov ided  the tem- 
pera tu re  is below a cri t ical  value,  condensa t ion  is not  l ikely to p lay  a ma jo r  
role in the known  in terac t ing  Bose systems. Even in favorable  cases, like 
l iquid ~He, there  is bo th  exper imenta l  m and theoret ical  (2) evidence that  only  
a few percent  o f  the part icles  occupy the ze ro -mome n tum state near  T = 0. 

Nevertheless,  there  is fundamenta l  interest  in the condensa t ion  phenome-  
non for  two reasons.  Firs t ,  it provides  a clue to our  u n d e r s t a n d i n g  o f  phase  
t rans i t ions  and spontaneous  b r e a k d o w n  of  symmetr ies  in continuous systems. 
Second,  it might  become an indispensable  facet  o f  a future  microscopic  theory  
o f  superftuidity.  

A typical  goal  o f  the theory  is to calculate the condensa te  f rac t ion for  a 
given in teract ion (e.g., Lennard-Jones  potent ials) .  The in tent ion  of  the present  
pape r  is different. We wish to establ ish bounds  for  the condensa te  tha t  are 
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uniform in the sense that they do not depend on the details of the interaction. 
In spirit, our investigation will follow the analysis of Hohenberg (a) and 
Chester et al., (4) who aimed at the demonstration that condensation is absent 
f rom one- and two-dimensional systems. 

The appropriate setting for our problem is provided by the quantum 
grand canonical ensemble for a nonrelativistic Bose field a(x) interacting via 
a pair potential ~. To avoid catastrophic behavior, (5) we must restrict our 
attention to a class of  " reasonable"  ~'s that satisfy the stability criterion. 
This is more than a technical condition and an uncritical extension to 
innocent looking potentials (e.g., -~b) often results in nonthermodynamic 
behavior. Actually, we shall impose a stronger condition than classical 
stability: We let the potential be superstable. (6) This ensures the existence of 
an equilibrium state for any value of the chemical potential /~ and thus 
excludes the free Bose system, (9~ which seemingly is the only nonsuperstable 
system of interest. 

We shall not repeat  arguments to demonstrate the existence of the 
thermodynamic limit (in the sense of  van Hove), which would require little 
more than is invoked here. For a concise account of the results we refer to 
Ruelle's book. (5) 

We emphasize another feature common to all potential models: The 
potential energy U defined by 

U = �89 f dx f dy ~(x - y)a+(x)a+(y)a(x)a(y) (1) 

is invariant under local gauge transformations 

a(x) >--> e~r(X)a(x), a + (x) ~ e-'r(X~a + (x) (2) 

even though the total Hamiltonian is not invariant [unlessf(x) is a constant]. 
To control condensation uniformly in q,, we use the fact that U commutes 
with the generators f dxf(x)a+(x)a(x),  thereby establishing an upper bound 
for the mean density Po of the condensate compared with the total mean 
density p at the inverse temperature/~: 

P0/O -< R(/~) < 1 (3) 

The bound R solves the equation 

1 - R = (R/~c[2/3) ~/2 (4) 

where v is the dimension and fly 1 is the critical temperature of the system 
without interaction: 

t3~ = (m/2rr)[p-~(v/2)l 2/~, ~(k) = ~.  n -~ (5) 

We put h = 1 and have denoted the common mass of  the particles by m. 
I f  v = 1 or 2, we have ~(v/2) = c~ and thus R(/3) = 0, confirming the result 
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of  Hohenberg. (3~ Condensation is also absent from systems that are "two- 
dimensional" in the sense that their volume is L x L x d with L -+ oo. (4~ 
If  v i> 3, Eq. (4) compares with the known result for the free Bose gas, 

l - Po/P = min{1, (flc/fl) ~/2} (6) 

and [provided the bound R(fl) cannot be improved] suggests that there exist 
interactions that enhance condensation. 

2. A H E U R I S T I C  D I S C U S S I O N  

Hohenberg's argument (s~ made use of an inequality 2 due to Bogoliu- 
bov (v): 

fl({A, A*})([C*, [H, C]]) /> 2[([A, C*])] 2 (7) 

where H is the Hamiltonian and ( . )  denotes the thermal average. The 
arbitrary operators A and C were suitably chosen within a finite-volume 
description of the system: 

A =fAdxe' Xa(x), c=fA dxd~Xa+(x)a(x) (8) 

Though (7) is sufficient to rule out condensation in two-dimensional systems, 
it gives poor results in three dimensions. 

The first problem we thus 'encounter is to find a stronger version of the 
Bogoliubov inequality. The solution to this problem is contained in a 
previous work (8~ concerning the Heisenberg ferromagnet. 

The next question concerns the validity of  both the inequality (7) and 
its stronger version when applied to unbounded operators. Ginibre (9) once 
formulated the condition that the operators should be bounded by some 
power of the number operator. Garrison and Wong (1~ pointed out that the 
KMS property provides an elegant proof of (7), and finally Bouziane and 
Martin (11) gave a complete and satisfactory answer to this problem. Some of 
their ideas will be employed in our simplified argument. 

Having overcome the first two difficulties, we are faced with another, 
more serious one. Following Bogoliubov's quasiaverage prescription, <I2~ a 
gauge-breaking term 

VrK = �89 fa dx [~a(x) + za+(x)], z = re ~ (9) 

is introduced into the Hamiltonian to stabilize the anomalous average 

7/e ~r = lira lira V - l (  dx (a(x)) (10) 
r40 A? JA 

2 { A , B )  = A B  + B A , [ A , B ]  = A B - -  B A .  
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Strictly speaking, Hohenberg's original proof  merely gives the result ~7 = 0 
for v ~< 2, and extending his argument to v/> 3, we get an upper bound for ~. 
But unlike in the Heisenberg model, where the magnetic field replaces r and 
where the spontaneous magnetization replaces ~, no direct physical signifi- 
cance can be attributed to the breaking term or to the anomalous average for 
a Bose system: These quantities merely test the spontaneous breakdown of 
gauge invariance. Instead, the quantity we really want to control is the mean 
density of the condensate 

~176 lim v-~fAAt dxfA dy(a+(x)a(y)} (11) 

where the breaking term is absent from the beginning. This then raises the 
question as to whether there is a relation between ~7 and p0. 

As was previously argued by Haag, (la~ in any primary (e.g., irreducible) 
representation, the space average of the field is represented by a constant. 
The way representations arise in our context is that one first obtains infinite- 
volume equilibrium states and then applies the Gel'fand-Segal construction/a) 
For a Bose system different primary equilibrium states oJ,, the "pure  phases," 
are expected to arise below the critical temperature and the assertion is that 
c% can be constructed following Bogoliubov's prescription: 

oJ~(A) = lira lim (A),  0 ~< ~ < 2rr (12) 
r~0 A? 

Clearly, all states oJ, coincide on gauge-invariant elements of the field 
algebra. Notice also that the order of limits in (12) is essential and it is only 
above the critical temperature that these limits may be interchanged, yielding 
a unique equilibrium state. 

Though the states o~, reflect the translational invariance of the theory, 
they do not reflect its gauge invariance. Nevertheless, a standard gauge- 
invariant state o) may be constructed as an integral over the gauge group, 

f/ ~o(A) = (2rr) -1 d~ o),(A) (13) 

which is believed to coincide with the infinite-volume limit of Gibbs ensembles 
with respect to the gauge-invariant Hamiltonian: 

oJ(A) = lim (A},=o (14) 
At' 

Taking everything said for granted, we would obtain the desired, yet unproved, 
relation P0 = ~z, the link between spontaneous symmetry-breaking and 
Bose-Einstein condensation. 

In fact, all our assertions can be verified and the equality of Po and ~2 
can be proved for the case of the free Bose gas. As for the general case, we 
would rather argue in favor of the inequality P0 ~< ~2. 
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At this point we want to make contact with some work by Griffiths (1~ 
concerning spontaneous magnetization in spin systems. Let Ho - h M  be 
the Hamiltonian of a spin lattice if a magnetic field h is applied. Then spon- 
taneous magnetization occurs if the average magnetic moment  per lattice site 
has a nonzero limit: 

mo = lira lim N - I ( M )  (15) 
; * t O  N--* co 

There is, however, a second notion of phase transition, which deals with 
long-range correlation, hence with the quantity 

m2 2 = lim N-2(M2)h=0  (16) 
N.-* oo 

Griffiths proved that m2 ~< too, while the equality m2 = mo is expected on 
heuristic grounds. Subsequently, Hepp and Lieb (15~ and Dyson et al. (1~ 
found more abstract versions of  this result. Unfortunately, the known proofs 
rely on the commutativity of  M and Ho and therefore do not apply to Bose 
systems with the obvious replacements (the breaking term K and the potential 
energy U do not commute). In Section 6 we take up certain ideas and tech- 
niques of  Ref. 16 and indicate necessary changes. 

3. THE BOSE SYSTEM IN A BOX 

We first describe a system of identical bosons enclosed in a cubic box 

A = {x ~ R ~] - L / 2  <~ x ~ <<. L/2} (17) 

of  volume V = L v. We take L2(A) (with respect to the Lebesque measure dx) 
as the one-particle Hilbert space. The associated Fock space ~ is the com- 
pletion of the symmetric tensor algebra constructed on L~(A) and may be 
decomposed into n-particle subspaces ~ such that each ~o ~ ~ is represented 
by a sequence (~o~),~>0 of wave functions % ~ ~ .  We also consider the 
projectors E~ onto a/g, and write the number operator as N = ~ nEn. 

As is well known, ~o serves as a representation space for the canonical 
commutat ion relations 

[a(f) ,  a+(g)]  = (f ,  g),  f ,  g e L2(A) (18) 

uniquely determined by a(f )Eo = 0. The polynomial algebra generated by 
these operators has C ~ ( N )  as common invariant dense domain, a In a 
formal manner, the Bose field is recovered by 

a( f )  = f dxf(x----)a(x), a+( f )  = f dx f ( x )a+(x )  (19) 

a C=(N) consists of all vectors ~o e ~o that make e~tNq, a C ~ function of t. 
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We look upon A as a v-dimensional torus, thereby maintaining transla- 
tional symmetry given by A viewed as a group acting on the torus in the 
obvious way. The corresponding unitary action on L2(A) has the one-particle 
momentum as generator with the spectrum 

A_ = {klkL/2, ,  ~ ZV} (20) 

Let us consider one-particle states fk(x)  = V -  ~12e~" with momentum k ~ X 
and the associated creation and annihilation operators ak = a(fk) and 
a~ § = a + (fk). Then the kinetic energy T, corresponding to the vn-dimensional 
Laplacian in og'~ with periodic boundary conditions, can also be characterized 
by TEo = 0 and 

[T, a~ + ] = (k2/2m)ak + (21) 

whereas the potential energy U is a multiplication operator: 

[U~],(xl,..., x , )  = ~ ~(x~ - xs)q~,(x~ ..... x , )  (22) 

The formal expression for the total Hamiltonian is 

H =  T +  U -  t z N -  VrK (23) 

where 

K = �89 + e~ao+) (24) 

To give meaning to H as self-adjoint operator, we adhere to the Friedrichs 
extension method, (5) assuming that the restrictions of T and U to ~ have a 
common dense domain and that U is bounded below in ~ .  Moreover, if the 
superstability condition is satisfied, 

~ c } ( x i -  xj)>~ c V -~n  2, c > 0  (25) 
i = l  / = i  

then NJe -~z  is trace class for any j />  0,/3 > 0, and arbitrary chemical poten- 
tial tx. (~ 

The natural algebra associated with our finite system is the algebra B (3r 
of all bounded operators. Obviously, 

<A) = Tr e-BUA/Tr e -en (26) 

exists for A e B ( ~  ,~) and defines the finite-volume equilibrium state enjoying 
the KMS property (19) with respect to the time evolution At = e-~tHAe uH. 
The algebra B(Jg') may be equipped with the Bogoliubov scalar product 

yo (.4, B)  = ds (e~nA*e-~HB) (27) 
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In Ref. 8 we proved the inequality 

b coth(b/c) < a (28) 

where 

a = �89 A}) (29) 

b = �89 a ] )  (30) 

c = fl-a(A, A) (31) 

4. AN UPPER B O U N D  FOR THE A N O M A L O U S  A V E R A G E  

To apply (28) successfully to the problem of determining (a(x)), it will 
be necessary to incorporate unbounded operators. We wish to accomodate 
these operators within the completion Jr of B ( ~ )  with respect to the norm 

llAI] = (A, A) 1'~ (32) 

Notice that J{" is no longer an algebra but merely a Hilbert space with con- 
jugation A --~ A*. The general inequality 

IIAI? ~< ~({A*, A)) (33) 

following from (28) relates the norm H" ]i to the Gibbs state. An essential 
property of the Gibbs state at hand is the existence of 

(NJ> = ~ nJ<E,>, j > 0 (34) 
" a = l  

This suggests that we examine operators A that are polynomially bounded in 
the sense that A and A* have a common dense domain larger than or equal to 
C~176 on which 

IIA II + llA* 011 IIp(N) ll (35) 
for some polynomial p(t ) .  

komma.  Any polynomially bounded operator A belongs to S .  

ProoL Let Pn be the projection ~r~, Er and assume (35). Then An = 
PnAPn is in B ( ~ ) .  We demonstrate that (An) is a Cauchy sequence with 
respect to H" ]I. Due to the symmetry of the problem under the replacement 
A ~ A*, we need only show that the following quantity can be made small: 

((An - Ar.)*(A. - Am)) 

= ( P , A * ( P n  - Pro)A) + ((Pn - Pm)A*PmA(P, - Pm)) 

<~ (A*(Pn -- P ~ ) A )  + ((Pn - Pm)A*A(Pn - Pro)) (n > m) (36) 
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Since the eigenvectors of e -Bn are in C=(N), (35) implies that ( A ' A )  <~ 
(p(N)2). Thus the second term in (36) can be made small for sufficiently 
large n and m. Moreover, the sequence (A*P,A), being monotone and 
bounded, converges; so the first term can be made small. �9 

By the principle of extension of inequalities, we may apply (28) to any 
polynomially bounded operator A. Choosing A = ak, we get 

(ak+ak) >1 [exp(fillak[[ -2) -- 11-1 (37) 

For  the grand canonical ensemble of the free Bose gas where H = T - / ~ N ,  
/~ < 0, we have that (8) 

Ilakll-5 = ([ak+, [n ,  ak]]) = (k2/2m) - Iz (38) 

and equality holds in (37). To find lower bounds for Ilak]l in the general case, 
we shall use the following variational principle: 

I(A' B)I~ (39) 
IIAP = sup (B, B-----3- 

Notice that the time evolution A--> At extends to a strongly continuous 
one-parameter group of isomorphisms ~ ---> ~ with densely defined genera- 
tor 3A = i[H, A] and the identity (17) 

(A, 3B) = i([A*, B])  (40) 

holds. Now let B take the form 3C in (39). Then by virtue of (40) 

{[AII 2 /> sup [([A, C*]>[ 2 (41) 
<[C*, [H, C]]> 

It remains for us to describe our option for the operator C. Let Ok with 
k ~ A be the multiplication operator given by 

(pk~.o),~(xl, .... x,) = ~ e~k':,%(xl ..... x,~) (42) 
r = l  

with same domain as N. Formally, Ok may be viewed as the Fourier transform 
of the density operator a+(x)a(x) and is, in fact, an important device in the 
theory of quantum fluids. (2~ 

The following commutators are obtained by an elementary calculation: 

[ak, p~*] = ao (43) 

[Pk*, [H, Pk]] = (k2/m)N + VrK (44) 

Notice that the potential ~ drops out of  (44), for we have that [U, Ok] = 0 
as a consequence of local gauge invariance of the interaction. If k = 0, Ok 
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coincides with the number operator and the expectation of (44) in the Gibbs 
state leads to 

V r ( K }  = II~X]l 2 >~ 0 (45) 

Hence (K} /> 0 as r > 0. Within the finite-volume description, the order 
parameter 7 may be defined by 

7 = ( K )  (46) 

Then 

~e~ = V-1/2(ao) = V - l ( d x ( a ( x ) )  = (a(x))  (47) 
d~ A 

by the translational invariance of the Gibbs state. 
We take ak and p~ as the operators A and C in (41) and get the inequality 

]la~][ 2 >/72(pk2/m + rT) - t  (48) 

where p = V - I ( N ) .  It is now apparent that Ilakll develops an infrared 
singularity in the thermodynamic limit (followed by r ~, 0) provided 

lira lira 7 > 0 (49) 
r . t 0  A t  

Our estimate (37) shows that the same is true for the momentum distribution 
function: 

(ak+ak) >1 {exp[/3(r7 + pk2/m)7 -z] - 1} -1 (50) 

Previous results (3.~ may be reproduced from (50) with the aid of the inequality 
(e x - 1) -1 > x -1 - 1/2 valid for x > 0. 

The formula (50) states that certain general features of a free Bose 
system persist regardless of the interaction. From I(ao/~ ~< (ao+ao) it 
follows that 

P - 72 >t V-1  k~o (ak+a~) 

>/ V -z k~o {exp[fi(r7 + pk2/m)7 -2] - 1} -1 (51) 

In the thermodynamic limit (L--> oo), the sum approaches a well-known 
integral �9 

p - 72 /> (2~r)-vf dk{exp[13(r7 + pk2/m)~l -~] - 1}-1 
,J/i~v 

[ rn72 ]Vl2g~,z(e-B~'n) (52) 

where 

gs(x) = ~ x"/n ~ (53) 
r ~ = l  
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As r - +  0, *1(r) decreases and is bounded from below, assuring the existence 
of lim *1(r) subject to the following relation of constraint: 

p - .i 2 >i (m~12/4~rp/3)'12C(v/2) = p(*1~/3J2p/9) w2 (54) 

This relation may be stated as .1~ ~< Rp, where R solves the equation 

1 - R = (R/3o/2/3) '~ (55) 

. ENTROPY A N D  F I N I T E - V O L U M E  ESTIMATES 

In thissect ion we describe some operator-theoretic results which will 
be useful for our program. 

Suppose that o~ is a normal state on B(3eg). Then 

~o(A) -- Tr pA (56) 

for some density operator p, and oJ is assigned the entropy 

S(oJ) = - T r  p log p /> 0 (57) 

Given two normal states ~o and O~o, one writes 

S(to]Wo) = Tr(p log p - p log p0) >/ 0 (58) 

for their relative entropy, aS~ In particular, if oJo is a Gibbs state, 

po = e-  B'~/Tr e-  a~ (59) 

[assuming e -an is trace class and w(H) exists], then 

S(oJlO~o) = log Tr e -an +/3~o(H) -- S(oJ) (60) 

We shall now consider perturbations described by the Hamiltonian H - VA 
and let A vary suitably. With no further assumptions on H, it will be safe to 
restrict A to the algebra B(3/t~ By the Golden-Thompson inequality 

Tr e a(vA-tt) ~ Tr(eaVAe - ~ )  (61) 

the operator e a(va-m is trace class. A noteworthy consequence of (60) is the 
variational principle 

S(oJ) = inf [log Tr e a(vA-m + /3Go(H -- VA)] (62) 
A 

Then (60) may be restated as 

V-1S(co[Wo) =/3 sup[w(A) - p(A)] (63) 
A 

where p(A)  is the relative pressure: 

p(A)  = (/3V) -1 log[Tr eB(VA-m/Tr e -an] (64) 

The formul a (63) characterizes the relative entropy per volume as the Legendre 
transform of the relative pressure, modulo a factor/~. 
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In certain situations one may be able to derive estimates for the entropy. 
For  instance, let oJ be given by the density operator 

p = O/Tr Q (65) 

and let 

Q = p~/2Ep~f2 (66) 

~< po and the log function is monotone on the 
5, Prop. 2.5.8), we infer that 

log Q - p log p0) - log o)0(E) 

where E is a projector. Since Q 
self-adjoint operators (see Ref. 

S(,o[oJ0) = Tr(p 

~< - log ,odE ) (67) 

The significance of (67) is as follows. Suppose the projector E refers to a 
macroscopic measurement, i.e., to a question with two possible answers: 
yes or no. Then ~,o(E) gives us the probability for the event " y e s "  to occur 
if the state was ~oo. Suppose we let the volume of the system increase. By (67), 
the probability , ode  ) will generally decrease at least at exp( - sV) ,  where 

s = lim V-1S(,,Icoo) >t 0 (68) 
A t  

Hence oJo(E) goes to zero unless o) has zero macroscopic entropy relative to 
the Gibbs state. What can we say about o~ ? 

In general, ~o is not a Gibbs state, nor does it have any simple physical 
interpretation. However, if H and E commute, then co(A) = ~oo(EAE)/o~o(E) 
and equality holds in (67). Here, oJ stands for the state after the property E 
has been confirmed in a measurement. With regard to the infinite system, we 
are thus faced with the following appealing situation: 

(i) There may be a nonvanishing probability that the thermodynamic 
system exhibits the property E. In this case, the measurement does not alter 
the state on a macroscopic level (zero relative entropy per volume). 

Conversely: 

(ii) Suppose a measurement of E would give rise to a macroscopic 
change of the state (nonzero relative entropy per volume). In this case, the 
result of the experiment is predicted to be " n o "  for E. 

To prove s > 0 for certain projections E, our strategy is to relate the 
entropy per volume to the pressure functional p(A) via (63). 

6. T H E  R E L A T I O N  po ~< z/~ 

In the preceding section we have developed the general theory. Our 
next task is to investigate how this theory may be applied to the Bose system 
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in a box A. To start with, let us consider its pressure relative to a system 
without a gauge-breaking term: 

pA(r) = (t3V) -1 log[Tr e-~(HA-vrrA~/Tr e-~HA] (69) 

where the dependence on A is now indicated explicitly (HA = TA + UA -- 
/~N^). By a comparison with (64), A = rKA. Though A is not a bounded 
operator, the pressure is well defined and even tends to a limit, (9~ 

p(r) = l imp^(r)  (70) 
A t  

which is a convex, hence continuous, function of the real parameter r. 
Note also that p(0) = 0 and p ( - r )  = p(r) [from the symmetry of the trace 
(69) under the unitary map exp(izrN)]. 

I f  condensation occurs, we do not expect p(r) to be differentiable at the 
point r = 0 (first-order phase transition with respect to r). Since the left and 
right derivatives ofp(r )  always exist and are opposite in sign, the last assertion 
precisely states that 

~/-= lim r - lp(r )  > 0 (71) 
rJ. 0 

Another formulation uses the Legendre transform: 

p*(t) = sup [rt - p(r)], t e R (72) 
geR 

Then p*(t) = 0 iff t ~ [-~/, ~/] and the interval 

Op(0) = [-7/, ~] (73) 

is called the subdifferential of p at r = 0. (21~ 
In a suitable realization of the Fock space, KA may be identified with q, 

where q and p constitute a canonical pair of oscillator variables satisfying 
[q, p] = i. In this way it is seen that the spectrum of the self-adjoint operator 
KA is purely continuous, not degenerate, and covers the entire real axis. Let 
f t EA(dt) be the spectral decomposition of KA and let I c R be a closed 
interval such that 

I n  [-~7, ~/1 = ~ (74) 

What  do we predict  for 

mA(I) - wA~ = Tr e-BnAEA(I)/Tr e-BH~, (75) 

in the thermodynamic limit ? The results of the last section suggest that we 
introduce an auxiliary state oJA and the expectation value 

o~A(KA) = Tr[e-(~mUAEA(I)e-(~I~KA]/[Tr e-BU~EA(I)] (76) 
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From (63) and (67), 

fi[coA(rKA) -- pA(r)] ~< V-:S(o~A]~A ~ ~< - V - :  log mA(I) (77) 

We first take the lower limit with respect to A, then take the supremum with 
respect to r, and thus get 

~p*(t) <~ - lira V - :  log mA(1) (78) 
A 

where 

t = lim oJA(KA) (79) 

We assert that t ~ I; this would be at once clear if the operators exp[-(/3/2)HA] 
and KA commute in (76). Recall that, for large A, KA tends to an element in 
the center of the field algebra. We therefore expect that commutativity is 
restored in the thermodynamic limit and hence 

~ = fz t dmA(t)/mA(I) § o(1) (80) 

where o ( 1 ) ~  0 as V-+ ~ .  Our argument is incomplete in that no precise 
estimate of 0(1) has been found. 

Taking (80) for granted, we infer that t --- lira o~A(KA) ~ l a n d  p*(t) > 0 
by assumption (74). This in turn implies that mA(I) tends to zero at least at 
the rate e x p [ -  V~p*(t)]. Thus for any bounded continuous function f :  R -+ R, 

inf f( t)  <~ lim f f dmA 
tE[- n,n] 3 

ffdrnA <~ sup f ( t )  (81) ~< 
�9 ] rE[  - rl,~/] 

The result may be extended to unbounded functions. For this we need some 
elementary facts and estimates. (We shall drop the index A for conciseness.) 

(A) K is bounded by the number operator: 

K 2 <~ V-:(ao+ao + �89 <~ V- : (N  + �89 (82) 

(B) Remember that H = T + U - t~N. The pressure 

P(tz) = l im(~V)-:  Tr e -~n (83) 

considered as a function of the chemical potential/z, is analytic in a neighbor- 
hood of the real axis. (9~ In particular, p = dP/dlz = lira V-I~o~ 

(C) For any real s, 

lim oJ~ :N)) = exp(sp) (84) 

To prove this, we choose V >/ Vo = s(/3E)-: > 0. Then 

exp[sV- :~o~ ~< co~ :N)) ~< [oJ~ :N))]vo/v 



204 G. Roepstorff 

where we used the convexity of e ~x and the concavity of xVd v for x I> 0. 
As A increases, the lower bound tends to e% whereas the upper bound tends 
to 

exp{sE-Z[P(/z + e) --P(/~)]} (85) 

Taking E ~ 0, we get (84). 

P r o p o s i t i o n .  Under the hypothesis (80), the inequalities (81) hold for 
any continuous function f :  R -+ R obeying 

If(t)l  <. a exp(st 2) (86) 

with positive constants a and s. 

Proof. For n >/ 1 and x />  0 we define 

g~(x) = min(x/n, x 112) (87) 

Then g. is a sequence of concave, increasing functions tending pointwise to 
zero. Put hn(x) = 1 - x- lg.(x2).  Obviously, g~ has bounded support and so 
has 

f . ( t )  = f( t)h.(exp(st  2)) (88) 

Thus, 

-f liam f .  dm <<. sup f.(t)~ .'- sup f ( t )  (89) 

Consider the error:  �9 

f I f  - f.[ dm <~a f g.(exp(2st2))din(t) 

<<. ag.(oJ~ + 1)])) (90) 

The first step follows from (86), the second step uses the concavity of g. ,  
and the third step is a consequence of (A) and the monotonicity of g. .  Next, 
we take the upper limit with respect to A and use (C): 

-I lim I f  - f.J dm <~ ag.(e 2~0) .--.oo > 0 (91) 

This establishes 

Replacing f by - f ,  we get (81). 

f f dm <~ sup f ( t )  
t e e  -- n , r f l  

II 

(92) 



Bounds for a Bose Condensate in Dimensions 205 

We are now ready to state the main result o f  this section. 

T h e o r e m .  Under  the hypothesis (80), 

lim V-lo~~ ao) <~ ,12 (93) 
A 

ProoL By the gauge invariance of  ~o ~ 

co~ 2~) = V-%J~ ao)) (94) 

where F~(x) = c~x ~ + ... + xc l  + co is a certain polynomial  with volume- 
independent  coefficients. As V - +  0% only the highest power survives, the 
coefficient o f  which is 

c ~ =  2 -2~(2n)  (95) 

We may  write 

c.[lim V-lco~ ao)] '~ <~ c. lim V-%J~ ao) ~) 

= lira co~ 2") 

= ~ f t 2~ dm(t)  <~ .12~ 

Now, c~ l" -+  1 as n ~ 0% yielding (93). [ ]  

Suppose the ordinary limit exists: 

po = lirn V-loJ~ 
AI' 

Then po is interpreted as 
po <~ .12 <~ Rp. 

(96) 

(97) 

the mean density o f  the condensate. By (93), 
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